Distinguishability of Locally Finite Trees

نویسندگان

  • Mark E. Watkins
  • Xiangqian Zhou
چکیده

The distinguishing number ∆(X) of a graph X is the least positive integer n for which there exists a function f : V (X) → {0, 1, 2, · · · , n−1} such that no nonidentity element of Aut(X) fixes (setwise) every inverse image f−1(k), k ∈ {0, 1, 2, · · · , n − 1}. All infinite, locally finite trees without pendant vertices are shown to be 2distinguishable. A proof is indicated that extends 2-distinguishability to locally countable trees without pendant vertices. It is shown that every infinite, locally finite tree T with finite distinguishing number contains a finite subtree J such that ∆(J) = ∆(T ). Analogous results are obtained for the distinguishing chromatic number, namely the least positive integer n such that the function f is also a proper vertex-coloring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local distinguishability of multipartite unitary operations.

We show that any two different unitary operations acting on an arbitrary multipartite quantum system can be perfectly distinguished by local operations and classical communication when a finite number of runs is allowed. Intuitively, this result indicates that the lost identity of a nonlocal unitary operation can be recovered locally. No entanglement between distant parties is required.

متن کامل

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

Infinite Paths in Locally Finite Graphs and in Their Spanning Trees

The paper concerns infinite paths (in particular, the maximum number of pairwise vertex-disjoint ones) in locally finite graphs and in spanning trees of such graphs.

متن کامل

A Note on Gromov-hausdorff-prokhorov Distance between (locally) Compact Measure Spaces

We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a locally finite measure. We prove that this space with the ex...

متن کامل

There are uncountably many topological types of locally finite trees

Consider two locally finite rooted trees as equivalent if each of them is a topological minor of the other, with an embedding preserving the tree-order. Answering a question of van der Holst, we prove that there are uncountably many equivalence classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007